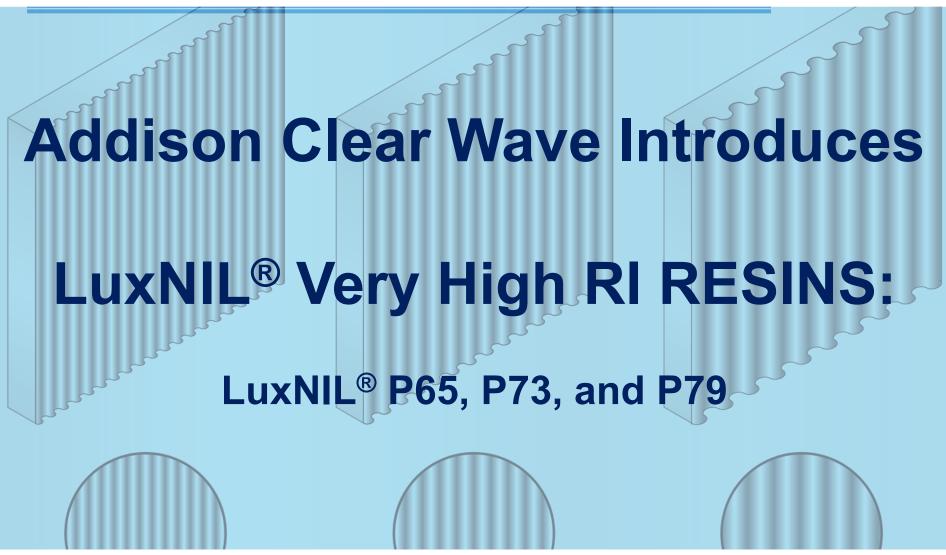


Addison Clear Wave Coatings Inc.


very high refractive index, high transparency

UV-curable LuxNIL® Resins

LuxNIL® RESINS

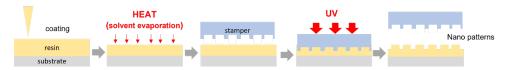
- UV-curable Resin
- Spin-coating, Gravure Coating, Ink-jet
- Optically Clear
- Refractive index: > 1.65 at 589 nm
- Highly transparent

Properties:

	LuxNIL® RESINS
Solvent Type	PGMEA
Resin Type	Inorganic dispersion with acrylate binder
Refractive index	1.7 - 1.9 (405nm); 1.6 - 1.8 (589 nm)
Transparency	Optically clear

P65, P73, and P79 Characteristics

RESIN TYPE: UV-curable inorganic-organic dispersion in PGMEA


Nano-particle size: 10 nm

APPLICATION NOTES:

PROCESS:

- 1) Coating step for film forming: P65, P73, and P79 are used as nano imprint lithography resins. These resins can be applied by spin coat, roll coat, ink-jetting, etc.
- 2) Solvent removing step: after coating, heat is applied at 70 to 100 °C for 60 sec to remove PGMEA.
- 3) Nano-imprint-lithography: replication of nano features with a stamper is conducted
- 4) UV cure: UV cure to fix the nano features.
- 5) Stamper is removed.

Coating thickness for P65, P73, P79: 100 to 3000 nm

PRE-CURE (for solvent removal): 70 – 100 °C for 60 sec, IR heating is acceptable **UV CURING CONDITIONS:**

*Metal halide/medium or high Mercury UV: <u>UV-A (320-400 nm)</u>, intensity: 50-1,000 mW/cm²

*or LED-365 nm, UV light intensity: 100 to 1,000 mW/cm²

RECOMMENDED UV DOSE (mJ/cm²): **750 to 2,000 mJ/cm²**

P65, P73, and P79 precure and UV cure conditions

	Precure conditions	UV dose (mJ/cm²)
P65	70-100 °C /60 sec	1,000 to 2,000
P73	70-100 °C /60 sec	1,000 to 1,500
P79	70-100 °C /60 sec	750 to 1,000

P65, P73, and P79 Optical Characteristics

	P65	P73	P79
Refractive Index of cured resin			
@ 405 nm	1.70	1.79	1.86
@ 589 nm	1.65	1.73	1.79
Abbe No (V _d)	23.7	21.0	18.5
Haze (%)*	0	0.05	0.06
Transmission (%)*§	91.1	90.2	89.5
Clarity (%)*	99.9	99.9	99.9

^{*1-2} micron film on glass

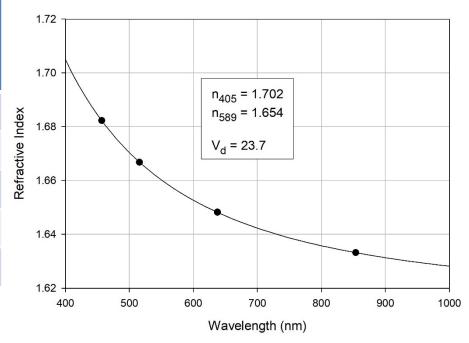
[§] no correction for surface reflection

Methods

- Samples were coated on 120 μm borosilicate glass, soft heated at 100 °C for 60 seconds, and cured with 0.7 to 2 J/cm² of UV-A light.
- Refractive index and film thickness were measured on a prism coupler at 25 °C
 - Wavelengths were 457, 516, 638, 854 nm
 - The data was solved as a Cauchy function
- % Transmission, haze, and clarity were measured for the thin films coated on glass

Environmental Stress

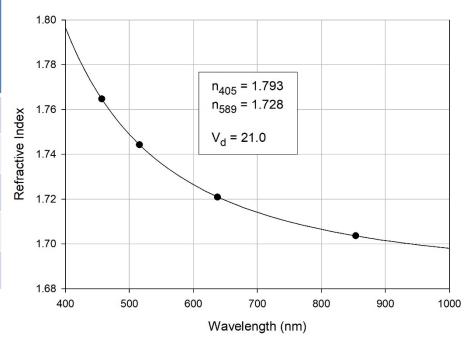
- The samples of P65, P73 and P79 coated on borosilicate glass were placed in an environmental stress chamber at 85 °C and 85% relative humidity.
- The samples were open to the atmosphere.
- After 1,100 hours, the samples were analyzed for RI,
 % transmission, haze, and clarity.
- Experimental data follows.


LuxNIL® P65

Property	Time Zero	1,100 hours at 85°C/85%RH
n ₄₀₅	1.702	1.728
n ₅₈₉	1.654	1.669
Transmission*	91.1%	89.0%
Haze*	0.0%	0.5%
Clarity*	99.9%	99.9%

^{*1.4} micron film on borosilicate glass. No correction for surface reflection

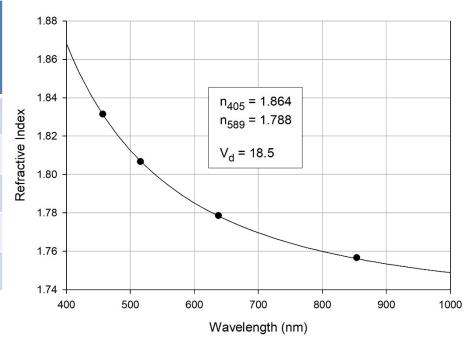
LuxNIL P65 on glass, 1.4 micron


LuxNIL® P73

Property	Time Zero	1,100 hours at 85°C/85%RH
n ₄₀₅	1.793	1.858
n ₅₈₉	1.728	1.773
Transmission*	90.2%	88.4%
Haze*	0.0%	0.5%
Clarity*	99.9%	99.8%

^{*1.0} micron film on borosilicate glass. No correction for surface reflection

LuxNIL P73 on glass, 1.0 micron


LuxNIL® P79

Property	Time Zero	1,100 hours at 85°C/85%RH
n ₄₀₅	1.864	1.908
n ₅₈₉	1.788	1.824
Transmission*	89.5%	87.9%
Haze*	0.1%	0.5%
Clarity*	99.9%	99.9%

^{*1.8} micron film on borosilicate glass. No correction for surface reflection

LuxNIL P79 on glass, 1.8 micron

LuxNIL® Resins:

- ACW very high refractive index products
- Refractive index: 1.6 to 1.8 at 589 nm
- Samples now available to customers
- Contact ACW at <u>LuxNIL@addisoncw.com</u>